Answer:
Explanation:
Gravitational Potential Energy at earth surface [tex]U_1=\frac{GM_em}{R_e}[/tex]
Gravitational Potential Energy at height h is [tex]U_2=\frac{GM_em}{R_e+h}[/tex]
Energy required to lift the satellite [tex]E_1=U_1-U_2[/tex]
[tex]E_1=\frac{GM_em}{R_e}-\frac{GM_em}{R_e+h}[/tex]
Now Energy required to orbit around the earth
[tex]E_2=\frac{1}{2}mv_{orbit}^2=\frac{GM_2m}{2(R_e+h)}[/tex]
[tex]\Delta E=E_1-E_2[/tex]
[tex]\Delta E=\frac{GM_em}{R_e}-\frac{GM_em}{R_e+h}-\frac{GM_2m}{2(R_e+h)}[/tex]
[tex]E_1=E_2[/tex] (given)
[tex]\frac{GM_em}{R_e}-\frac{GM_em}{R_e+h}-\frac{GM_2m}{2(R_e+h)}=0[/tex]
[tex]\frac{1}{R_e}-\frac{3}{2(R_e+h)}=0[/tex]
[tex]h=\frac{R_e}{2}[/tex]
[tex]h=3.19\times 10^6\ m[/tex]
(b)For greater height [tex]E_1[/tex] is greater than [tex]E_2[/tex]
thus energy to lift the satellite is more than orbiting around earth