Respuesta :

Answer:

Exponential function if the form [tex]e^{Kx}[/tex] is the constant multiple K of itself if.

[tex]y'=\frac{dy}{dx}=cKe^{Kx} \\y'=Ky[/tex]

Step-by-step explanation:

The exponential function of the form [tex]e^x[/tex] is the function which is the derivative of itself.

Where:

x is independent variable

Now if we talk about constant then again exponential function if the form [tex]e^{Kx}[/tex] is the constant multiple K of itself if we take the dervative.

Mathmatical Prove:

Consider the general equation

let [tex]y=ce^{Kx}[/tex]

Where:

K is a constant

c is the cofficient(could be any number)

Now:

Taking derivative of above equation w.r.t x:

[tex]y'=\frac{dy}{dx}=cKe^{Kx} \\y'=Ky[/tex]

Hence proved exponential function is a constant multiple K of it self.