Answer:
[tex]2.96866\times 10^{17}\ C[/tex]
Explanation:
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
k = Coulomb constant = [tex]8.99\times 10^{9}\ Nm^2/C^2[/tex]
r = Distance between the objects and particles
[tex]q_1=q_2[/tex] = Charges
M = Mass of Sun = [tex]1.989\times 10^{30}\ kg[/tex]
m = Mass of Earth = [tex]5.972\times 10^{24}\ kg[/tex]
Here, the Electric force will balance the gravitational force
[tex]\dfrac{GMm_2}{r^2}=\dfrac{kq_1q_2}{r^2}\\\Rightarrow q=\sqrt{\dfrac{GMm}{k}}\\\Rightarrow q=\sqrt{\dfrac{6.67\times 10^{-11}\times 5.972\times 10^{24}\times 1.989\times 10^{30}}{8.99\times 10^{9}}}\\\Rightarrow q=2.96866\times 10^{17}\ C[/tex]
Charge on each particle will be [tex]2.96866\times 10^{17}\ C[/tex]