If an evil genius decided to free the Earth from the Sun by charging both (with an equal charge) to generate an electrical force equal to the gravitational force between them, how much charge would be needed on each?

Respuesta :

Answer:

[tex]2.96866\times 10^{17}\ C[/tex]

Explanation:

G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²

k = Coulomb constant = [tex]8.99\times 10^{9}\ Nm^2/C^2[/tex]

r = Distance between the objects and particles

[tex]q_1=q_2[/tex] = Charges

M = Mass of Sun = [tex]1.989\times 10^{30}\ kg[/tex]

m = Mass of Earth = [tex]5.972\times 10^{24}\ kg[/tex]

Here, the Electric force will balance the gravitational force

[tex]\dfrac{GMm_2}{r^2}=\dfrac{kq_1q_2}{r^2}\\\Rightarrow q=\sqrt{\dfrac{GMm}{k}}\\\Rightarrow q=\sqrt{\dfrac{6.67\times 10^{-11}\times 5.972\times 10^{24}\times 1.989\times 10^{30}}{8.99\times 10^{9}}}\\\Rightarrow q=2.96866\times 10^{17}\ C[/tex]

Charge on each particle will be [tex]2.96866\times 10^{17}\ C[/tex]