Respuesta :

Answer:

[tex]\overline{X} = \{-3, -2, -1, 7, 8, 9 \}[/tex]

Step-by-step explanation:

The objective is to find the complement of the set given that

                           [tex]U = \{ x| x\in \mathbb{I} \; \wedge \; -3 \leq x \leq 9 \}\\[/tex]

                              [tex]X = \{x| x \in \mathbb{W} \;\wedge \; x<7 \}[/tex]

The set [tex]U[/tex], written comma-separated equals

                   [tex]U = \{ -3, -2, -1, 0, 1 , 2, 3, 4, 5 , 6, 7, 8, 9 \}[/tex]

and the set [tex]X[/tex] is

                           [tex]X = \{ 0, 1, 2, 3, 4, 5, 6 \}[/tex].

We need to find all elements from the set [tex]U[/tex] that are not in the set [tex]X[/tex].

Comparing the elements of this two sets yields

                           [tex]\overline{X} = \{-3, -2, -1, 7, 8, 9 \}[/tex]

where [tex]\overline{X}[/tex] denotes the complement of the set [tex]X[/tex].