Respuesta :

Answer:

[tex]\lim_{x\rightarrow 6}\frac{x^2-10x+24}{x-6}=2[/tex]

Step-by-step explanation:

We are given that

[tex]\lim_{x\rightarrow 6}\frac{x^2-10x+24}{x-6}[/tex]

We have to find the limit if exist.

Using factorization method factorize the numerator of given function.

[tex]\lim_{x\rightarrow 6}\frac{x^2-6x-4x+24}{x-6}[/tex]

[tex]\lim_{x\rightarrow 6}\frac{x(x-6)-4(x-6)}{x-6}[/tex]

[tex]\lim_{x\rightarrow 6}\frac{(x-6)(x-4)}{x-6}[/tex]

After cancel out the same factor of numerator and denominator we get

[tex]\lim_{x\rightarrow 6}(x- 4)[/tex]

[tex]6-4=2[/tex]

Hence, [tex]\lim_{x\rightarrow 6}\frac{x^2-10x+24}{x-6}=2[/tex]