how many molecules of sulfuric acid are in a spherical raindrop of diameter 6.0 mm if the acid rain has a concentration of 4.4 * 10^-4

Respuesta :

Answer:

The number of moles =

[tex]Moles=4.97\times 10^{-8}[/tex]

The number of molecules =

[tex]Molecules = 2.99\times 10^{16}[/tex]

Explanation:

Volume of the sphere is given by :

[tex]V=\frac{4}{3}\pi r^{3}[/tex]

here, r = radius of the sphere

[tex]radius=\frac{diameter}{2}[/tex]

[tex]radius=\frac{6.0}{2}[/tex]

Radius = 3 mm

r = 3 mm

1 mm = 0.01 dm (1 millimeter = 0.001 decimeter)

3 mm = 3 x 0.01 dm = 0.03 dm

r = 0.03 dm

("volume must be in dm^3 , this is the reason radius is changed into dm"

"this is done because 1 dm^3 = 1 liter and concentration is always measured in liters")

[tex]V=\frac{4}{3}\pi 0.03^{3}[/tex]

[tex]V=\frac{4}{3}\pi 2.7\times 10^{-5}[/tex]

[tex]V=1.13\times 10^{-4}dm^{3}[/tex]

[tex]V=1.13\times 10^{-4}L[/tex]   (1 L = 1 dm3)

Now, concentration "C"=

[tex]C=4.4\times 10^{-4}moles/liter[/tex]  

The concentration is given by the formula :

[tex]C=\frac{moles}{Volume(L)}[/tex]

This is also written as,

[tex]Moles = C\times Volume[/tex]

[tex]Moles=1.13\times 10^{-4}\times 4.4\times 10^{-4}[/tex]

[tex]Moles=4.97\times 10^{-8}[/tex]moles

One mole of the substance contain "Na"(= Avogadro number of molecules)

So, "n"  mole of substance contain =( n x Na )

[tex]N_{a}=6.022\times 10^{23}[/tex]

Molecules =

[tex]Molecule=4.97\times 10^{-8}\times 6.022\times 10^{23}[/tex]

[tex]Molecules = 2.99\times 10^{16}[/tex] molecules