Respuesta :

Answer:

The answer to the question = pi/2

Step-by-step explanation:

A detailed step  by step workings has been attached below.

Ver imagen olumidechemeng
Ver imagen olumidechemeng

After converting the provided integral to polar coordinates, the value of integral is evaluated π/2.

What is polar form?

When the Cartesian coordinates (x,y) are expressed in the polar coordinates (r, θ), then this form is called the polar form.

The given integral function in the problem is,

[tex]\int_0^{\sqrt{4}} \int\limits^x_{-x} dydx[/tex]

Let suppose, [tex]x=r\cos\theta[/tex] and [tex]y=r\sin\theta[/tex]. Thus,

[tex]\sin\theta=\dfrac{y}{r}\\\cos\theta=\dfrac{x}{r}[/tex]

Limits are  y=x. From the trigonometry, the value of theta in the given triangle can be given as,

[tex]\dfrac{\sin\theta}{\cos\theta}=1\\\tan\theta=1\\\theta=\tan^{-1}1\\\theta=45^o\\\theta=\dfrac{\pi}{4}[/tex]

Similarly, for y=-x the value of angle,

[tex]\theta=-\dfrac{\pi}{4}[/tex]

Thus, the limits of theta are from -π/4 to π/4. From the Pythagoras theorem,

[tex]r^2=x^2+y^2\\r^2=(r\cos\theta)^2+(r\sin\theta)^2\\r^2=r^2(1)[/tex]

Thus, the limits of r is from 0 to 1. Convert the given integral in polar form as,

[tex]\int\limits^{\pi/4}_{-\pi/4} \int_0^{1} dt ds\\\int\limits^{\pi/4}_{-\pi/4} [1-0] dt \\\int\limits^{\pi/4}_{-\pi/4} dt \\\dfrac{\pi}{4}-\left(-\dfrac{\pi}{4} \right) \\\dfrac{\pi}{2} \\[/tex]

Hence, after converting the provided integral to polar coordinates, the value of integral is evaluated π/2.

Learn more about the polar form here;

https://brainly.com/question/24943387