Respuesta :

Answer:

The equation of line is:

[tex]77x+4y=340[/tex]

Step-by-step explanation:

Given points:

[tex](0,85)[/tex] and [tex](4,8)[/tex]

To find the equation of the line.

Solution:

In order to find the equation of the line we will first find the slope of the line.

The slope of a line passing through points [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] the slope can be given as:

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

Plugging in the given points to find the slope of the line.

[tex]m=\frac{8-85}{4-0}[/tex]

[tex]m=\frac{-77}{4}[/tex]

Equation of line can be written in point slope form as:

[tex]y-y_1=m(x-x_1)[/tex]

where [tex](x_1,y_1)[/tex]  is a point on the line.

Using point (4,8)

[tex]y-8=-\frac{77}{4}(x-4)[/tex]

Multiplying both sides by 4.

[tex]4(y-8)=4.(-\frac{77}{4})(x-4})[/tex]

[tex]4(y-8)=-77(x-4)[/tex]

Using distribution:

[tex]4y-32=-77x+308[/tex]

Subtracting [tex]4y[/tex] both sides.

[tex]4y-4y-32=-77x-4y+308[/tex]

[tex]-32=-77x-4y+308[/tex]

Subtracting 308 both sides.

[tex]-32-308=-77x-4y+308-308[/tex]

[tex]-340=-77x-4y[/tex]

Multiplying each term with -1.

[tex]340=77x+4y[/tex]

Thus, equation of line is:

[tex]77x+4y=340[/tex]