Respuesta :

x = 3 x = 7 Okay well I got C. f(x) = x2 - 10x + 21 I got it because u subtract and add at the last part.

we know that

The zeros of the function are the values of x when the value of the  function is equal to zero

so

Let's verify each case to determine the solution.

Substitute the value of [tex]x=3[/tex] and [tex]x=7[/tex] in each function and then verify the value of the function  

case A) [tex]f(x)=x^{2} +4x-21[/tex]

For [tex]x=3[/tex]

[tex]f(3)=3^{2} +4*3-21=0[/tex]

therefore

the value of [tex]x=3[/tex] is a zero of the function

For [tex]x=7[/tex]

[tex]f(7)=7^{2} +4*7-21=56[/tex]

therefore

the value of [tex]x=7[/tex] is not a zero of the function

The case A) is not the solution

case B) [tex]f(x)=x^{2} -4x-21[/tex]

For [tex]x=3[/tex]

[tex]f(3)=3^{2} -4*3-21=-24[/tex]

therefore

the value of [tex]x=3[/tex] is not a zero of the function

For [tex]x=7[/tex]

[tex]f(7)=7^{2} -4*7-21=0[/tex]

therefore

the value of [tex]x=7[/tex] is a zero of the function

The case B) is not the solution

case C) [tex]f(x)=x^{2} -10x+21[/tex]

For [tex]x=3[/tex]

[tex]f(3)=3^{2} -10*3+21=0[/tex]

therefore

the value of [tex]x=3[/tex] is a zero of the function

For [tex]x=7[/tex]

[tex]f(7)=7^{2} -10*7+21=0[/tex]

therefore

the value of [tex]x=7[/tex] is a zero of the function

The case C) is a solution

case D) [tex]f(x)=x^{2} -10x-21[/tex]

For [tex]x=3[/tex]

[tex]f(3)=3^{2} -10*3-21=-42[/tex]

therefore

the value of [tex]x=3[/tex] is not a zero of the function

For [tex]x=7[/tex]

[tex]f(7)=7^{2} -10*7-21=-42[/tex]

therefore

the value of [tex]x=7[/tex] is not a zero of the function

The case D) is not a solution

therefore

The answer is

[tex]f(x)=x^{2} -10x+21[/tex]