Respuesta :

Answer:

The average rate of change of [tex]f(x) = x^2 +6x+13[/tex]  is 12

The average rate of change of [tex]f(x) =- x^2 +6x+13[/tex] is 10

Step-by-step explanation:

The  average rate of change  of f(x) over an interval between 2 points (a ,f(a)) and (b ,f(b)) is the slope of the  secant line  connecting the 2 points.

We can calculate the average rate of change between the 2 points  by

[tex]\frac{f(b) - f(a)}{b -a}[/tex]-------------------(1)

(1) The average rate of change of the function [tex]f(x) = x^2 +6x+13[/tex]  over  the interval 1 ≤ x ≤ 5

f(a) = f(1)

[tex]f(1) = (1)^2 +6(1) + 13[/tex]

f(1) =1+6+13

f(a) =  20---------------------(2)

f(b) = f(5)

[tex]f(5) = (5)^2 +6(5)+13[/tex]

f(5) = 25 +30 +13

f(5) = 68-----------------------(3)

The average rate of change between (1 ,20) and (5 ,68 ) is

Substituting eq(2) and(3) in (1)

=[tex]\frac{f(5) - f(1)}{5-1}[/tex]

=[tex]\frac{68 -20}{5-1}[/tex]

= [tex]\frac{48}{4}[/tex]

=12

This means that the average of all the slopes of lines tangent to the graph of f(x) between  (1 ,20) and (5 ,68 ) is 12

(2) The average rate of change of the function  [tex]f(x) = -x^2 +6x+13[/tex] over  the interval -1 ≤ x ≤ 5

f(a)  = f(-1)

[tex]f(1) = (-1)^2 +6(-1) + 13[/tex]

f(1) =1-6+13

f(1) = 8---------------------(4)

f(b) = f(5)

[tex]f(5) = (5)^2 +6(5)+13[/tex]

f(5) = 25 +30 +13

f(5) = 68-----------------------(5)

The average rate of change between (-1 ,8) and (5 ,68 ) is

Equation (1) becomes

[tex]\frac{f(5) - f(-1)}{5-(-1)}[/tex]

On substituting the values

=[tex]\frac{68 - 8}{5-(-1)}[/tex]

=[tex]\frac{60}{5+1}[/tex]

=[tex]\frac{60}{6}[/tex]

= 10

This means that the average of all the slopes of lines tangent to the graph of f(x) between  (-1 ,8) and (5 ,68 ) is 10