Respuesta :

The equation of the line is y = [tex]\frac{5}{4}[/tex] x +  [tex]\frac{9}{2}[/tex]

Step-by-step explanation:

The form of the linear equation is y = mx + b, where

  • m is the slope of the line, [tex]m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]
  • b is the y-intercept, to find b substitute x and y in the equation by the coordinates of any point on the line

∵ A line passes through points ( [tex]\frac{2}{5}[/tex] , 5) and ( [tex]-\frac{2}{5}[/tex] , 4)

∴ [tex]x_{1}[/tex] =  [tex]\frac{2}{5}[/tex]  and [tex]x_{2}[/tex]  =  [tex]-\frac{2}{5}[/tex]

∴ [tex]y_{1}[/tex] = 5  and  [tex]y_{2}[/tex] = 4

- Substitute them in the rule of the slope to find m

∵ [tex]m=\frac{4-5}{-\frac{2}{5}-\frac{2}{5} }[/tex]

∴ [tex]m=\frac{-1}{-\frac{4}{5}}=\frac{5}{4}[/tex]

- Substitute it in the form of the equation

∴ y = [tex]\frac{5}{4}[/tex] x + b

- To find b substitute x and y in the equation by the coordinates

   of any point on the line

∵ Point ( [tex]\frac{2}{5}[/tex] , 5) lies on the line

∴ x = [tex]\frac{2}{5}[/tex]  and y = 5

∴ 5 = [tex]\frac{5}{4}[/tex] (  [tex]\frac{2}{5}[/tex] ) + b

∴ 5 = [tex]\frac{1}{2}[/tex] + b

- Subtract  [tex]\frac{1}{2}[/tex]  from both sides

∴ [tex]\frac{9}{2}[/tex]  = b

∴ y = [tex]\frac{5}{4}[/tex] x +  [tex]\frac{9}{2}[/tex]

The equation of the line is y = [tex]\frac{5}{4}[/tex] x +  [tex]\frac{9}{2}[/tex]

Learn more:

You can learn more about the linear equations in brainly.com/question/1284310

#LearnwithBrainly