Respuesta :

Answer:

The approximate perimeter of  △ABC is 12.34 units

Step-by-step explanation:

we know that

The perimeter of a triangle is the sum of its three length sides

so

[tex]P=AB+BC+AC[/tex]

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

step 1

Find the distance AB

we have

A(3,4), B(−1,1)

substitute the values

[tex]d=\sqrt{(1-4)^{2}+(-1-3)^{2}}[/tex]

[tex]d=\sqrt{(-3)^{2}+(-4)^{2}}[/tex]

[tex]d=\sqrt{25}[/tex]

[tex]d_A_B=5\ units[/tex]

step 2

Find the distance BC

we have

B(−1,1),C(−2,5)

substitute the values

[tex]d=\sqrt{(5-1)^{2}+(-2+1)^{2}}[/tex]

[tex]d=\sqrt{(4)^{2}+(-1)^{2}}[/tex]

[tex]d=\sqrt{5}[/tex]

[tex]d_B_C=2.24\ units[/tex]

step 3

Find the distance AC

we have

A(3,4),C(−2,5)

substitute the values

[tex]d=\sqrt{(5-4)^{2}+(-2-3)^{2}}[/tex]

[tex]d=\sqrt{(1)^{2}+(-5)^{2}}[/tex]

[tex]d=\sqrt{26}[/tex]

[tex]d_A_C=5.10\ units[/tex]

step 4

Find the perimeter

[tex]P=5+2.24+5.10=12.34\ units[/tex]