Respuesta :
Answer:
Cost of steak-in-a-bun burger is $1.95 and cost of queen-size burger is $1.05.
Step-by-step explanation:
Let the cost of queen-size burger be 'q'.
Let the cost of steak-in-a-bun be 's'.
Given:
a steak-in-a-bun cost $0.90 more than a queen-size burger.
So we can say that;
[tex]s=0.9+q \ \ \ \ equation\ 1[/tex]
Given:
the coach took ten students to burger box.
Hence Number of person at burger box = 11
The coach and three students ordered steak-on-a-bun while the other students ordered queen-size burgers.
So we can say that;
Number of queen sized burger = 11 - 4 =7
Number of steak on a bun burger = 4
Also Given:
Total bill = $15.11
Now we can say that;
Total bill is equal to sum of Number of queen sized burger multiplied by Cost of queen sized burger and Number of steak on a bun burger multiplied by cost of steak on a bun burger.
framing in equation form we get;
[tex]4s+7q =15.15\ \ \ \ equation\ 2[/tex]
Substituting equation 1 in equation 2 we get;
[tex]4(0.9+q)+7q=15.15[/tex]
Applying distributive property we get;
[tex]3.6+4q+7q=15.15\\\\3.6+11q=15.15[/tex]
Subtracting both side by 3.6 we get;
[tex]3.6+11q-3.6 =15.15-3.6\\\\11q=11.55[/tex]
Dividing both side by 11 we get;
[tex]\frac{11q}{11}=\frac{11.55}{11}\\\\q=\$1.05[/tex]
Substituting the value of q in equation 1 we get;
[tex]s=0.9+q=0.9+1.05=\$1.95[/tex]
Hence Cost of steak-in-a-bun burger is $1.95 and cost of queen-size burger is $1.05.