Respuesta :

ANSWER: Exact Form: 2[tex]\sqrt{145}[/tex]

Decimal Form:  24.08318915

STEP-BY-STEP EXPLANATION:

(-12,1)  (12,-1)

Use the distance formula to determine the distance between the two points.

Distance = [tex]\sqrt{(X2-X1)^{2  }+ (Y2-Y1)^{2} }[/tex]

Substitute the actual values of the points into the distance formula.

[tex]\sqrt{(12-(-12))^{2  }+ ((-1)-1)^{2} }[/tex]

Multiply  -1 BY -12

[tex]\sqrt{(12+12)^{2  }+ ((-1)-1)^{2} }[/tex]

Add 12 and 12

[tex]\sqrt{24^{2} +((-1)-1)^{2} }[/tex]

Raise 24 to the power of 2

[tex]\sqrt{576 +((-1)-1)^{2} }[/tex]

[tex]\sqrt{576+4}[/tex]

[tex]\sqrt{580}[/tex]

Rewrite 580 as [tex]2^{2}[/tex]·145

Factor 4 out of 580

[tex]\sqrt{4(145)}[/tex]

Rewrite 4 as [tex]2^{2}[/tex]

[tex]\sqrt{2^{2}(145) }[/tex]

Pull terms out from under the radical.

2[tex]\sqrt{145}[/tex]

The result can be shown in multiple forms.

Exact Form: 2[tex]\sqrt{145}[/tex]

Decimal Form:  24.08318915

The distance between the points will be "24.08 units".

Given points:

  • [tex](x_1,y_1) = (-12,1)[/tex]
  • [tex](x_2,y_2) = (12,-1)[/tex]

As we know the formula,

→ [tex]Distance = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

By substituting the values, we get

                  [tex]= \sqrt{(12-(-12))^2+(-1-1)^2}[/tex]

                  [tex]= \sqrt{(24)^2+(-2)^2}[/tex]

                  [tex]= \sqrt{576+4}[/tex]

                  [tex]= \sqrt{580}[/tex]

                  [tex]= 24.08 \ units[/tex]

Thus the above answer is correct.    

Learn more:

https://brainly.com/question/21065704