Respuesta :
ANSWER: Exact Form: 2[tex]\sqrt{145}[/tex]
Decimal Form: 24.08318915
STEP-BY-STEP EXPLANATION:
(-12,1) (12,-1)
Use the distance formula to determine the distance between the two points.
Distance = [tex]\sqrt{(X2-X1)^{2 }+ (Y2-Y1)^{2} }[/tex]
Substitute the actual values of the points into the distance formula.
[tex]\sqrt{(12-(-12))^{2 }+ ((-1)-1)^{2} }[/tex]
Multiply -1 BY -12
[tex]\sqrt{(12+12)^{2 }+ ((-1)-1)^{2} }[/tex]
Add 12 and 12
[tex]\sqrt{24^{2} +((-1)-1)^{2} }[/tex]
Raise 24 to the power of 2
[tex]\sqrt{576 +((-1)-1)^{2} }[/tex]
[tex]\sqrt{576+4}[/tex]
[tex]\sqrt{580}[/tex]
Rewrite 580 as [tex]2^{2}[/tex]·145
Factor 4 out of 580
[tex]\sqrt{4(145)}[/tex]
Rewrite 4 as [tex]2^{2}[/tex]
[tex]\sqrt{2^{2}(145) }[/tex]
Pull terms out from under the radical.
2[tex]\sqrt{145}[/tex]
The result can be shown in multiple forms.
Exact Form: 2[tex]\sqrt{145}[/tex]
Decimal Form: 24.08318915
The distance between the points will be "24.08 units".
Given points:
- [tex](x_1,y_1) = (-12,1)[/tex]
- [tex](x_2,y_2) = (12,-1)[/tex]
As we know the formula,
→ [tex]Distance = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
By substituting the values, we get
[tex]= \sqrt{(12-(-12))^2+(-1-1)^2}[/tex]
[tex]= \sqrt{(24)^2+(-2)^2}[/tex]
[tex]= \sqrt{576+4}[/tex]
[tex]= \sqrt{580}[/tex]
[tex]= 24.08 \ units[/tex]
Thus the above answer is correct.
Learn more:
https://brainly.com/question/21065704