Respuesta :
Answer:
a) [tex] C_{metal}=- \frac{100 gr * 4.186 \frac{J}{gr C} (27.8 -23.7)C}{ 59.047 gr *(27.8-100)C} =0.402 \frac{J}{ g C}[/tex]
b) [tex] C_{metal}= \frac{100 gr * 4.184 \frac{J}{gr C} (1.2)C +1.23 \frac{J}{K} (1.2 K))}{ 25.6 gr *(100-26.2)C} =0.267 \frac{J}{ g C}[/tex]
Explanation:
Part a
For this case we have the following data:
[tex] m_{metal}= 59.047 gr[/tex] the mass of the metal
[tex] c_{metal}=?[/tex] Is the value that we need to find
[tex] T_{f}= 27.8 C[/tex] represent the final temperature of equilibrium for the metal and the water
[tex] T_{i, metal}= 100 C[/tex] represent the initial temperature for the metal
[tex] m_{water}= 100 gr[/tex] since the density is 1g/ml
[tex] C= 4.186 \frac{J}{g C}[/tex] the specific heat for the liquid water
[tex] T_{i, water}= 23.7 C[/tex] the initial temperature for the water
For this case we have this equation:
[tex] \sum_{i=1}^n Q_i =0[/tex] if we have balance then we have this:
[tex] Q_{water} = -Q_{metal}[/tex]
And if we replace the formulas for heat we got:
[tex] 100 gr * 4.186 \frac{J}{gr C} (27.8 -23.7)C =- 59.047 gr * C_{metal}*(27.8-100)C[/tex]
And if we solve for [tex] C_{metal}[/tex] we got:
[tex] C_{metal}=- \frac{100 gr * 4.184 \frac{J}{gr C} (27.8 -23.7)C}{ 59.047 gr *(27.8-100)C} =0.402 \frac{J}{ g C}[/tex]
Part b
For this case we have the following balance:
[tex] Q_{lost} = Q_{gained}[/tex]
On this case the metal loss heat and this heat is gained by the water and the calorimeter, so we have this:
[tex] Q_{lost} = Q_{w} + Q_{calorimeter}[/tex]
And if we replace the info given we have this:
[tex] 25.6 gr *C_{metal} *(100-26.2)C = 100 gr * 4.184 \frac{J}{gr C} (26.2-25)C + 1.23 \frac{J}{K} (26.2+273 -25 -273)K[/tex]
And if we solve for [tex] C_{metal}[/tex] we got:
[tex] C_{metal}= \frac{100 gr * 4.184 \frac{J}{gr C} (1.2)C +1.23 \frac{J}{K} (1.2 K))}{ 25.6 gr *(100-26.2)C} =0.267 \frac{J}{ g C}[/tex]