The resolution limit of a microscope is roughly equal to the wavelength of light used in producing the image. Electron microscopes use an electron beam (in place of photons) to produce much higher resolution images, about 0.22 nm in modern instruments.Assuming that the resolution of an electron microscope is equal to the de Broglie wavelength of the electrons used, to what speed must the electrons be accelerated to obtain a resolution of 0.26 ?

Respuesta :

Explanation:

Equation for de Broglie wavelength is as follows.

            [tex]\lambda = \frac{h}{mv}[/tex]

where,    m = mass of particle moving

               v = velocity

             h = Planck's constant = [tex]6.626 \times 10^{-34} Js[/tex]

When particle is electron then value of mass is [tex]9.109 \times 10^{-31} kg[/tex].

Wavelength of electron = 0.26 nm

                                       = [tex]0.26 nm \times \frac{10^{-9}}{1 nm}[/tex]

                                       = [tex]0.26 \times 10^{-9}[/tex] nm

Therefore, speed of electron will be calculated as follows.

                    v = [tex]\frac{h}{m \lambda}[/tex]

                       =  [tex]\frac{6.626 \times 10^{-34} Js}{2.6 \times 10^{-10} \times 9.109 \times 10^{-31} kg}[/tex]

                       = [tex]2.79 \times 10^{6} m/s[/tex]

Thus, we can conclude that speed at which electrons be accelerated to obtain a resolution of 0.26 is [tex]2.79 \times 10^{6} m/s[/tex].