Answer:
[tex]8.90392\times 10^{-9}\ W[/tex]
[tex]5.36518\times 10^{-9}\ W[/tex]
Explanation:
h = Planck's constant = [tex]6.626\times 10^{-34}\ m^2kg/s[/tex]
c = Speed of light = [tex]3\times 10^8\ m/s[/tex]
t = Time taken = 3.8 ms
[tex]\lambda[/tex] = Wavelength
n = Number of protons = [tex]8\times 10^7[/tex]
Power is given by
[tex]P=\dfrac{E}{t}\\\Rightarrow P=\dfrac{nh\dfrac{c}{\lambda}}{t}\\\Rightarrow P=\dfrac{8\times 10^7\times 6.626\times 10^{-34}\times \dfrac{3\times 10^8}{470\times 10^{-9}}}{3.8\times 10^{-3}}\\\Rightarrow P=8.90392\times 10^{-9}\ W[/tex]
The power is [tex]8.90392\times 10^{-9}\ W[/tex]
[tex]P=\dfrac{nh\dfrac{c}{\lambda}}{t}\\\Rightarrow P=\dfrac{8\times 10^7\times 6.626\times 10^{-34}\times \dfrac{3\times 10^8}{780\times 10^{-9}}}{3.8\times 10^{-3}}\\\Rightarrow P=5.36518\times 10^{-9}\ W[/tex]
The power is [tex]5.36518\times 10^{-9}\ W[/tex]