The position of a particle moving along the x-axis varies with time according to x(t) = 5.0t2-4.0t3m. Find (a) the displacement, average velocity, average acceleration between 0.0 s and 1.0,

Respuesta :

Answer:

[tex]\Delta x=1-0=1\ m[/tex]

[tex]\Delta v=-2-0=-2\ m.s^{-1}[/tex]

[tex]\Delta a=-14-10=-24\ m.s^{-1}[/tex]

Explanation:

The equation governing the position of the particle moving along x-axis is given as:

[tex]x=5\times t^2-4\times t^3[/tex]

we know that the time derivative of position gives us the velocity:

[tex]\frac{d}{dt} x=v[/tex]

[tex]v=10\ t-12\ t^2[/tex]

and the time derivative of of velocity gives us the acceleration:

[tex]\frac{d}{dt} v=a[/tex]

[tex]a=10-24\ t[/tex]

Now, when t = 0

[tex]x=0\ m[/tex]

[tex]v=0\ m.s^{-1}[/tex]

[tex]a=10\ m.s^{-2}[/tex]

When t=1 s

[tex]x_1=5\times 1^2-4\times 1^3=1\ m[/tex]

[tex]v_1=10\times 1-12\times 1^2=-2\ m.s^{-1}[/tex]

[tex]a_1=10-24\times 1=-14\ m.s^{-2}[/tex]

Hence,

Displacement between the stipulated time:

[tex]\Delta x=x_1-x[/tex]

[tex]\Delta x=1-0=1\ m[/tex]

Velocity between the stipulated time:

[tex]\Delta v=v_1-v[/tex]

[tex]\Delta v=-2-0=-2\ m.s^{-1}[/tex]

Acceleration between the stipulated time:

[tex]\Delta a=a_1-a[/tex]

[tex]\Delta a=-14-10=-24\ m.s^{-1}[/tex]

Here negative sign indicates that the vectors are in negative x direction.