Respuesta :

Answer:

Step-by-step explanation:

Given is a differential equation as

[tex]ty' + 6y = t^2 - t + 1, y(1) = 1 6 , t > 0[/tex]

Divide this by t to get in linear form

[tex]y'+6y/t = t-1+1/t[/tex]

This is of the form

y' +p(t) y = Q(t)

where p(t) = 1/t[tex]e^(\int 1/tdt) = t[/tex]

So solution would be

[tex]yt = \int t^2-t+1 dt\\= t^3/3-t^2/2+t+C[/tex]

siubstitute y(1) = 16

[tex]16 = 16^3/3-128+1+C\\C = -1206[/tex]