Respuesta :
Answer:
[tex]\mu_k=\dfrac{gsin\theta -a}{gcos\theta}[/tex]
Explanation:
g = Acceleration due to gravity = 9.80 m/s²
a = Acceleration= 3.6 m/s²
[tex]\theta[/tex] = Angle = 27°
The equation is
[tex]\mu_kmgcos\theta=mgsin\theta -ma[/tex]
Mass gets cancelled
[tex]\\\Rightarrow \mu_kgcos\theta=gsin\theta -a[/tex]
Rearranging for [tex]\mu_k[/tex]
[tex]\\\Rightarrow \mu_k=\dfrac{gsin\theta -a}{gcos\theta}[/tex]
The simplified expression is
[tex]\mathbf{\mu_k=\dfrac{gsin\theta -a}{gcos\theta}}[/tex]
*the options are incomplete. The above answer is the required solution
The simplified expression for coefficient of kinetic friction is 0.097.
The given parameters:
- g = 9.8 m/s²
- a = 3.6 m/s²
- θ=27.0∘
The simplified expression for coefficient of kinetic friction is calculated as follows;
μkmgcosθ = mgsinθ − ma
m(μkgcosθ) = m(gsinθ − a)
μkgcosθ = gsinθ − a
[tex]\mu_k = \frac{gsin\theta - a}{gcos\theta} \\\\\mu_k = \frac{(9.8 \times sin27) - 3.6}{9.8 \times cos(27)} \\\\\mu_k = 0.097[/tex]
Thus, the simplified expression for coefficient of kinetic friction is 0.097.
Learn more about coefficient of kinetic friction here: https://brainly.com/question/20241845