Respuesta :
Answer:
Pf = (7 , 0 , 18.7 ) kg.m/s
Explanation:
initial momentum (Pi) = ( 7 , 0 , 4 ) kg.m/s
force (F) = ( 0 , 0 , 2100 ) N
time interval (t) = 7 x 10 ^{-3} s = 0.007 s
find the final momentum (Pi) of the pluck
from the updated form of the momentum principle Pf = Pi + F(Δt)
where Δt is the same as the time interval
substituting all required values we have
Pf = ( 7 , 0 , 4 ) + [( 0 , 0 , 2100 ) x 0.007]
Pf = ( 7 , 0 , 4 ) + ( 0 , 0 , 14.7 )
Pf = (7 , 0 , 18.7 ) kg.m/s
The change in momentum is directly proportional to the product of the force and time elapsed. The new momentum of the given puck will be 7, 0, 18.7 kgm/s.
From Impulse- momentum Theorem:
[tex]P_f = F\times T+P_i[/tex]
Where,
[tex]P_f[/tex] - final momentum
[tex]P_i [/tex] - initial momentum = <7, 0, 4 > kg · m/s
[tex]F[/tex] - force = ‹ 0, 0, 2100 › N
[tex]T[/tex] - time = [tex] 7\times 10^{-3} s[/tex]
Put the values in the formula,
[tex]Pf = ( 7 , 0 , 4 ) + [( 0 , 0 , 2100 ) \times 0.007]\\\\ Pf = ( 7 , 0 , 4 ) + ( 0 , 0 , 14.7 )\\\\ Pf = (7 , 0 , 18.7 ) \rm \ kg.m/s [/tex]
Therefore, the new momentum of the given puck will be 7, 0, 18.7 kgm/s.
Learn more about Impulse-momentum Theorem:
https://brainly.com/question/904448