A hockey puck is sliding along the ice with nearly constant momentum ‹ 7, 0, 4 › kg · m/s when it is suddenly struck by a hockey stick with a force ‹ 0, 0, 2100 › N that lasts for only 7 milliseconds (7×10−3) s. What is the new momentum of the puck?

Respuesta :

Answer:

Pf = (7 , 0 , 18.7 ) kg.m/s

Explanation:

initial momentum (Pi) = ( 7 , 0 , 4 ) kg.m/s

force (F) = ( 0 , 0 , 2100 ) N

time interval (t) = 7 x 10 ^{-3} s = 0.007 s

find the final momentum (Pi) of the pluck

from the updated form of the momentum principle Pf = Pi + F(Δt)

where Δt is the same as the time interval

substituting all required values we have

Pf = ( 7 , 0 , 4 ) + [( 0 , 0 , 2100 ) x 0.007]

Pf =  ( 7 , 0 , 4 ) + ( 0 , 0 , 14.7 )

Pf = (7 , 0 , 18.7 ) kg.m/s

The change in momentum is directly proportional to the product of the force and time elapsed. The new momentum of the given puck will be 7, 0, 18.7 kgm/s.

From Impulse- momentum Theorem:

[tex]P_f = F\times T+P_i[/tex]

Where,

[tex]P_f[/tex] - final momentum

[tex]P_i [/tex] - initial momentum =  <7, 0, 4 > kg · m/s

[tex]F[/tex] - force =  ‹ 0, 0, 2100 › N

[tex]T[/tex] - time = [tex] 7\times 10^{-3} s[/tex]

Put the values in the formula,

[tex]Pf = ( 7 , 0 , 4 ) + [( 0 , 0 , 2100 ) \times 0.007]\\\\ Pf = ( 7 , 0 , 4 ) + ( 0 , 0 , 14.7 )\\\\ Pf = (7 , 0 , 18.7 ) \rm \ kg.m/s [/tex]

Therefore, the new momentum of the given puck will be 7, 0, 18.7 kgm/s.

Learn more about  Impulse-momentum Theorem:

https://brainly.com/question/904448