In a photoelectric effect experiment, electrons are ejected from a titanium surface (work function, 3 eV) following irradiation with UV light. The energy of the incident UV light is 7.2 x 10-19 J.
(a) Calculate the wavelength of the ejected electrons.
(b) Calculate the wavelength of the incident UV light.
(c) would an iron surface (Ф-4.7 eV require a longer or shorter wavelength of light to eject electrons with the same wavelength calculated in part (a)? Briefly explain.

Respuesta :

Explanation:

According to the Einstein law, it is known that

            [tex]h \times \nu = \phi + \frac{1}{2} mv^{2}[/tex]

where,   h = energy of light

           [tex]\phi[/tex] = work function

           [tex]m v^{2}[/tex] = kinetic energy of electron

It is given that the value of [tex]h \nu[/tex] is [tex]7.2 \times 10^{-19} J[/tex]. And,

               1 eV = [tex]1.6 \times 10^{-19} J[/tex]

Here,  [tex]\phi[/tex] for titanium is 4.33 eV

          = [tex](4.33 \times 1.6 \times 10^{-19})[/tex] J  

          = [tex]6.928 \times 10^{-19}[/tex] J

(a)   First of all, kinetic energy will be calculated as follows.

             [tex]\frac{1}{2}mv^{2} = h \nu - \phi[/tex]

                         = [tex](7.2 \times 10^{-19} - 6.92 \times 10^{-19})[/tex] J

                         = [tex]0.272 \times 10^{-19}[/tex] J

It is known that mass of electrons is equal to [tex]9.109 \times 10^{-31} kg[/tex].

Therefore, [tex]mv^{2} = 0.544 \times 10^{-19} J[/tex]

and,     [tex](mv)^{2} = 9.109 \times 0.544 \times 10^{-19} \times 10^{-31}[/tex]

                       = [tex]4.955 \times 10^{-50}[/tex]

                mv = [tex]2.225 \times 10^{-25}[/tex]

Now, the relation between wavelength and mv is as follows.

      [tex]\lambda = \frac{6.626 \times 10^{-34}}{2.225 \times 10^{-25}}[/tex]

                   = [tex]2.98 \times 10^{-9} m[/tex]

Therefore, the wavelength of the ejected electrons is [tex]2.98 \times 10^{-9} m[/tex].

(b)   It is known that relation between energy and wavelength is as follows.

               E = [tex]h \nu = \frac{hc}{\lambda}[/tex]

                  [tex]\lambda = \frac{6.626 \times 10^{-34} \times 3 \times 10^{8}}{7.2 \times 10^{-19}}[/tex]

                     = [tex]\frac{6.626 \times 3 \times 10^{-26}}{7.2 \times 10^{-19}}[/tex]

                    = [tex]2.76 \times 10^{-7} m[/tex]

Hence, the wavelength of the ejected electrons is [tex]2.76 \times 10^{-7} m[/tex].

(c)   For iron surface, [tex]\phi = 4.7 eV[/tex]

                                       = [tex](4.7 \times 1.6 \times 10^{-19})[/tex] J

                                       = [tex]7.52 \times 10^{-19}[/tex] J

Here, the value of [tex]\phi[/tex] is more than the value of UV light source. Hence, we need a shorter wavelength light as we know that,

                  [tex]E \propto \frac{1}{\lambda}[/tex]

Therefore, lesser will be the wavelength higher will be the energy.