Triangle A B C is shown. The length of A B is 12, the length of B C is 24, and the length of C A is 12 StartRoot 3 EndRoot What are the angle measures of triangle ABC? m∠A = 30°, m∠B = 60°, m∠C = 90° m∠A = 90°, m∠B = 60°, m∠C = 30° m∠A = 60°, m∠B = 90°, m∠C = 30° m∠A = 90°, m∠B = 30°, m∠C = 60°

Respuesta :

Answer:

m∠A = 90°, m∠B = 60°, m∠C = 30°

Step-by-step explanation:

step 1

see the attached figure to better understand the problem

In this problem we have a right triangle, because the Pythagorean Theorem is satisfied

so

[tex]BC^2=AB^2+AC^2[/tex]

[tex]24^2=12^2+(12\sqrt{3}) ^2\\\\576=576[/tex]

therefore

[tex]m\angle A=90^o[/tex]

step 2

Find the measure of angle B

we know that

In the right triangle ABC

[tex]cos(B)=\frac{AB}{BC}[/tex] ----> by CAH (adjacent side divided by the hypotenuse)

substitute the given values

[tex]cos(B)=\frac{12}{24}[/tex]

[tex]m\angle B=cos^{-1}(\frac{12}{24})=60^o[/tex]

step 3

Find the measure of angle C

we know that

[tex]m\angle B+m\angle C=90^o[/tex] ----> by complementary angles

we have

[tex]m\angle B=60^o[/tex]

substitute

[tex]60^o+m\angle C=90^o\\m\angle C=30^o[/tex]

therefore

m∠A = 90°, m∠B = 60°, m∠C = 30°

Ver imagen calculista

Answer:

m∠A = 90°, m∠B = 60°, m∠C = 30

Step-by-step explanation:

got it right on edg 2020-2021