Answer:
Angular speed of the towers top about its base is [tex]6.91\times 10^{-13}[/tex] rad per sec.
Step-by-step explanation:
Linear velocity of leaning bell tower 'v' = 1.2 mm per year
v = [tex]\frac{1.2\times 10^{-3}}{365\times 24\times 60\times 60}[/tex]
v = 3.8 × [tex]10^{-11}[/tex] meter per second
Height of the tower = 55 meter
From the formula of angular velocity,
v = rω
ω = [tex]\frac{v}{r}[/tex]
ω = [tex]\frac{3.8\times 10^{-11}}{55}[/tex]
ω = [tex]6.91\times 10^{-13}[/tex] rad per second.
Therefore, top of the tower is moving with an angular speed of [tex]6.91\times 10^{-13}[/tex] rad per second.