Consider the reaction 5Br−(aq)+BrO−3(aq)+6H+(aq)→3Br2(aq)+3H2O(l) The average rate of consumption of Br− is 1.76×10−4 M/s over the first two minutes. What is the average rate of formation of Br2 during the same time interval?Express your answer numerically in molar per second to three significant figures.
Rate of formation of Br2=1.14×10− 4 M/s
What is the average rate of consumption of H+ during the same time interval?
Express your answer numerically in molar per second.

Respuesta :

Answer:

1) [tex]7.04\times 10^{-5} M/s[/tex] is the average rate of formation of bromine gas during the same time interval.

2) [tex]3.42\times 10^{-4} M/s[/tex] is the average rate of consumption of [tex]H^+[/tex] during the same time interval.

Explanation:

[tex]5Br^-(aq)+BrO_3^{-}(aq)+6H^+(aq)\rightarrow 3Br_2(aq)+3H_2O(l)[/tex]

1 ) Rate of the reaction : R

[tex]R=-\frac{1}{5}\frac{d[Br^-]}{dt}=\frac{1}{2}\frac{d[Br_2]}{dt}[/tex]

The average rate of consumption of [tex]Br^-=1.76\times 10^{-4} M/s[/tex]

[tex]-\frac{d[Br^-]}{dt}=1.76\times 10^{-4} M/s[/tex]

The average rate of formation of [tex]Br_2=\frac{d[Br_2]}{dt}[/tex]

[tex]-\frac{1}{5}\frac{d[Br^-]}{dt}=\frac{1}{2}\frac{d[Br_2]}{dt}[/tex]

[tex]\frac{1}{5}\times 1.76\times 10^{-4} M/s=\frac{1}{2}\frac{d[Br_2]}{dt}[/tex]

[tex]\frac{d[Br_2]}{dt}=7.04\times 10^{-5} M/s[/tex]

[tex]7.04\times 10^{-5} M/s[/tex] is the average rate of formation of bromine gas during the same time interval.

2 ) Rate of the reaction : R

[tex]R=-\frac{1}{6}\frac{d[H^+]}{dt}=\frac{1}{2}\frac{d[Br_2]}{dt}[/tex]

The average rate of formation of [tex]Br_2=\frac{d[Br_2]}{dt}=1.14\times 10^{-4} M/s[/tex]

The average rate of consumption of [tex]H^+=-\frac{d[H^+]}{dt}[/tex]

[tex]-\frac{1}{6}\frac{d[H^+]}{dt}=\frac{1}{2}\frac{d[Br_2]}{dt}[/tex]

[tex]-\frac{1}{6}\frac{d[H^+]}{dt}=\frac{1}{2}\times 1.14\times 10^{-4} M/s[/tex]

[tex]-\frac{d[H^+]}{dt}=3.42\times 10^{-4} M/s[/tex]

[tex]3.42\times 10^{-4} M/s[/tex] is the average rate of consumption of [tex]H^+[/tex] during the same time interval.