Answer:
The speed of electron is [tex]v=4.52\times 10^6\ m/s[/tex] and the speed of proton is 2468.02 m/s.
Explanation:
Given that,
Electric field, E = 560 N/C
To find,
The speed of each particle (electrons and proton) 46.0 ns after being released.
Solution,
For electron,
The electric force is given by :
[tex]F=qE[/tex]
[tex]F=1.6\times 10^{-19}\times 560=8.96\times 10^{-17}\ N[/tex]
Let v is the speed of electron. It can be calculated using first equation of motion as :
[tex]v=u+at[/tex]
u = 0 (at rest)
[tex]v=\dfrac{F}{m}t[/tex]
[tex]v=\dfrac{8.96\times 10^{-17}}{9.1\times 10^{-31}}\times 46\times 10^{-9}[/tex]
[tex]v=4.52\times 10^6\ m/s[/tex]
For proton,
The electric force is given by :
[tex]F=qE[/tex]
[tex]F=1.6\times 10^{-19}\times 560=8.96\times 10^{-17}\ N[/tex]
Let v is the speed of electron. It can be calculated using first equation of motion as :
[tex]v=u+at[/tex]
u = 0 (at rest)
[tex]v=\dfrac{F}{m}t[/tex]
[tex]v=\dfrac{8.96\times 10^{-17}}{1.67\times 10^{-27}}\times 46\times 10^{-9}[/tex]
[tex]v=2468.02\ m/s[/tex]
So, the speed of electron is [tex]v=4.52\times 10^6\ m/s[/tex] and the speed of proton is 2468.02 m/s. Therefore, this is the required solution.