Answer:
v = 13.22 m/s
Explanation:
mass of rod (M) = 0.179 kg
spring constant (k) = 37107 N/m
initial compression (Ei) = 3.2 x 10^{-2} m
final compression (Ef) = 1.35 x 10^{-2} m
acceleration due to gravity (g) = 9.8 m/s^{2}
from the conservation of energy, the total energy in the system before impact = the total energy in the system after impact
[tex]0.5.mv^{2} + mg(hf) + 0.5k(Ef)^{2} = 0.5.mu^{2} + mg(hi) + 0.5k(Ei)^{2}[/tex]
where
[tex]0.5.mv^{2} + mg(hf) + 0.5k(Ef)^{2} = mg(hi) + 0.5k(Ei)^{2}[/tex]
now we rearrange the equation above to make v the subject of the formula
[tex]v= \sqrt{\frac{k(Ei^{2}-Ef^{2})}{m} + 2g(hi - hf) }[/tex]
[tex]v= \sqrt{\frac{37107((3.2x10^{-2})^{2} -(1.35x10^{-2})^{2} )}{0.179}+2x 9.8 x(0.0185) }[/tex]
v = 13.22 m/s