A particle's position along the x-axis is described by. x(t)= At+Bt^2where t is In seconds: x is in meters: and the constants A and B are given below.Randomized Variables A= -3.5 m/s B= 3.9 m/s^2 a. What is the velocity, in meters per second. of the particle at the time t1= 3.0 s? b. What is the velocity, in meters per second: of the particle when it is at the origm (x=0) at time to> 0?

Respuesta :

Answer

given,

position of particle

x(t)= A t + B t²

A = -3.5 m/s

B = 3.9 m/s²

t = 3 s

a)  x(t)= -3.5 t + 3.9 t²

   velocity of the particle is equal to the differentiation of position w.r.t. time.

[tex]\dfrac{dx}{dt}=\dfrac{d}{dt}(-3.5t + 3.9t^2)[/tex]

[tex]v= -3.5 + 7.8 t [/tex]------(1)

velocity of the particle at t = 3 s

  v = -3.5 + 7.8 x 3

 v = 19.9 m/s

b) velocity of the particle at origin

  time at which particle is at origin

  x(t)= -3.5 t + 3.9 t²

   0 = t (-3.5  + 3.9 t )

   t = 0, [tex]t=\dfrac{3.5}{3.9}[/tex]

   t = 0 , 0.897 s

speed of the particle at t = 0.897 s

from equation (1)

 v = -3.9 + 7.8 t

 v = -3.9 + 7.8 x 0.897

  v = 3.1 m/s

To solve the problem we should know about velocity.

Velocity

Velocity is the rate of change of its position with respect to time.

[tex]V = \dfrac{dy}{dt}[/tex]

Given to us

  • x(t)= At+Bt^2
  • A= -3.5 m/s
  • B= 3.9 m/s^2

Velocity of Particle

x(t)= At+Bt²

[tex]V(t) = \dfrac{dy}{dt} = \dfrac{d(At+Bt^2)}{dt} = A+2Bt[/tex]

A.)  the velocity, in meters per second. of the particle at the time t1= 3.0 s,

Velocity of particle(t = 3.0 s)

[tex]V(t) = A +2Bt[/tex]

Substituting the values,

[tex]V(t_1=3) = (-3.5) +2(3.9)(3.0)\\\\V(t_1=3) = 19.9\ m/s[/tex]

B.)  the velocity, in meters per second: of the particle when it is at the origin (x=0) at t ≥ 0

Displacement, x = 0

[tex]x(t)= At+Bt^2\\\\0 = At+Bt^2\\\\[/tex]

Taking t as common,

[tex]0 = t(A+Bt)\\\\[/tex]

[tex]0 = (A+Bt)\\\\[/tex]

Substituting the values and solving or t,

[tex]0 = A+ Bt\\0 = -3.5 + (3.9)t\\3.5=3.9t\\t= \dfrac{3.5}{3.9}\\\\t = 0.8974\ s[/tex]

Velocity of particle(t = 0.8974 s)

Substituting the value in the formula of velocity,

[tex]V(t) = A +2Bt[/tex]

Substituting the values,

[tex]V(t_1=0.8974) = (-3.5) +2(3.9)(0.8974)\\\\V(t_1=3) = 3.5 \ m/s[/tex]

Hence, the velocity of the particle is 3.5 m/s.

Learn more about Velocity:

https://brainly.com/question/862972