Respuesta :

Answer:

The correct option is D) -9/16

Therefore the final expression when X is equal to -1 and Y is equal to 4 is

[tex]9x^{-5}y^{-2}=-\dfrac{9}{16}[/tex]

Step-by-step explanation:

Given:

[tex]9x^{-5}y^{-2}[/tex]

Evaluate when x = -1 and y = 4

Solution:

When x = -1 and y = 4 we hane

[tex]9x^{-5}y^{-2}=9(-1)^{-5}(4)^{-2}[/tex]

Identity we have

[tex]x^{-a}=\dfrac{1}{x^{a}}[/tex]

As we know  minus sign multiplied by odd number of times the number is multiplied and the assign remain same that is minus. Therefore,

[tex](-1)^{5}=-1\times -1\times -1\times -1\times -1\\(-1)^{5}=-1[/tex]

Now using the above identity we get

[tex]9x^{-5}y^{-2}=\dfrac{9}{(-1)^{5}}\times \dfrac{1}{(4)^{2}}[/tex]

[tex]9x^{-5}y^{-2}=\dfrac{9}{-1}\times\dfrac{1}{16}[/tex]

[tex]9x^{-5}y^{-2}=-\dfrac{9}{16}[/tex]

Therefore the final expression when X is equal to -1 and Y is equal to 4 is

[tex]9x^{-5}y^{-2}=-\dfrac{9}{16}[/tex]