Respuesta :
Answer:
a. is below in the explanation
b. 1/3e^(-y/3)
c.0.05882
d. 0.2231
e. 7 f.25
Step-by-step explanation:
Let and be independent random variables representing the lifetime (in 100 hours) of Type A and Type B light bulbs, respectively. Both variables have exponential distributions, and the mean of X is 2 and the mean of Y is 3.
a can be solved as follows [tex]\frac{1}{\alpha\beta } e^{\frac{-x-y}{\alpha\beta } }[/tex]
[tex]\frac{1}{6} e^{\frac{-\alpha }{2} -\beta/3 }[/tex]
1/6[tex]e^{\frac{-(3x+2y}{6 }[/tex]
b.
f(y/x)=f(x).f(y)/{f(y)}=f(y)
1/3e^(-y/3)
c. Find the probability that a Type A bulb lasts at least 300 hours and a Type B bulb lasts at least 400 hours.
[tex]\int\limits^\alpha _4 {1/6e^{-(3x+2y)/6} } \, dy[/tex]
1/2e^-(3x+8)/6
[tex]\int\limits^\alpha _3 {e^{-(3x+800)} } \, dx \\[/tex]
0.05882
Given that a type B fails at 300 hours . we find the probability that type A bulb lasts longer than 300hr
f(x>y|y=3)=f(x>3)
[tex]\int\limits^a_3 {1/2e^{-x/2} } \, dx[/tex]
0.2231
e.e) What is the expected total lifetime of two Type A bulbs and one Type B bulb?
E(2A+B)
(2E(A)+E(y)
2*2+3
=7
f. variance of the total lifetime of two types A bulbs and one type B bulb
V(2x+y)=
4*4+9
=25