Answer:
[tex]v_2[/tex]≅-4.1 m/s (-ve for left)
[tex]v_2\\[/tex] ≅4.1 m/s (To the left)
Explanation:
According to the conservation of momentum:
Momentum before collision=Momentum After Collision
[tex]m_1v_1+m_2v_2=m_1v'_1+m_2v'_2[/tex]
Where:
[tex]m_1[/tex] is the 15g marble
[tex]m_2[/tex] is the 22 g marble
[tex]v_1[/tex] is the velocity of 15g marble before collision
[tex]v_2[/tex] is the velocity of 22g marble before collision
[tex]v'_1[/tex] is the velocity of 15g marble after collision
[tex]v'_2[/tex] is the velocity of 22g marble after collision
Note: -ve sign for left, +ve sign for right
We have to calculate v_2:
Above equation on rearranging will become:
[tex]v_2=\frac{m_1v'_1+m_2v'_2-m_1v_1}{m_2} \\v_2=\frac{(0.015kg)(-5.4m/s)+(0.022kg)(2m/s)-(0.015kg)(3.5)}{0.022kg} \\v_2=-4.06 m/s\\[/tex]
[tex]v_2[/tex]≅-4.1 m/s (-ve for left)
[tex]v_2\\[/tex] ≅4.1 m/s (To the left)