Respuesta :
Explanation:
Given:
source temperature T1= 825° C = 1099 K
Sink temperature T2= 15°C = 288 K
Heat Supplied to the engine Qs= 3200 KW
a) Efficiency of a Carnot engine is
[tex]\eta =1-\frac{T_1}{T_2}[/tex]
[tex]=1-\frac{1099}{288}[/tex]
=0.7379
=73.79%
b)
[tex]\eta= \frac{Power delivered}{power recieved}[/tex]
let W be the powe delivered
[tex]0.7379= \frac{W}{3200}[/tex]
W= 2361.408 KW
c) Heat rejected to the cold temperature Qr= Qs-W
= 3200-2361.408=838.60 KW
d) Entropy change in the sink
[tex]\Delta S= \frac{Qr}{T_{sink}}[/tex]
=838.60/288= 2.911 W/K
Answer:
a. [tex]\eta_{th}=0.7377=73.77\%[/tex]
b. [tex]P=2360655.7377\ W[/tex]
c. [tex]Q_o=839344.2622\ W[/tex]
d. [tex]\Delta s=2914.3897\ J.K^{-1}[/tex]
Explanation:
Given:
- temperature of the source, [tex]T_H=825+273=1098\ K[/tex]
- heat received from the source, [tex]Q_i=3200000\ J.s^{-1}[/tex]
- temperature of the sink,[tex]T_L=15+273=288\ K[/tex]
a.
Since the engine is a Carnot engine:
[tex]\eta_{th}=1-\frac{T_L}{T_H}[/tex]
[tex]\eta_{th}=1-\frac{288}{1098}[/tex]
[tex]\eta_{th}=0.7377=73.77\%[/tex]
b.
Now the power delivered:
since here we are given with the rate of heat transfer
[tex]P=\eta_{th}\times Q_i[/tex]
[tex]P=0.7377\times 3200000[/tex]
[tex]P=2360655.7377\ W[/tex]
c.
rate of heat rejection to the sink:
[tex]Q_o=Q_i-P[/tex]
[tex]Q_o=3200000-2360655.73770491808[/tex]
[tex]Q_o=839344.2622\ W[/tex]
d.
[tex]\Delta s=\frac{Q_o}{T_L}[/tex]
[tex]\Delta s=\frac{839344.2622}{288}[/tex]
[tex]\Delta s=2914.3897\ J.K^{-1}[/tex]