Answer:
See explanation
Step-by-step explanation:
Use formula
[tex]I=P\cdot r\cdot t,[/tex]
where
I = interest,
P = principal,
r = rate (as decimal),
t = time
In your case,
[tex]P=\$1,539\\ \\r=0.01[/tex]
If [tex]t_1=5[/tex] years, then
[tex]I_1=1,539\cdot 0.01\cdot 5=76.95[/tex] and the whole sum is [tex]\$1,539+\$76.95=\$1,615.95[/tex]
If [tex]t_2=10[/tex] years, then
[tex]I_2=1,539\cdot 0.01\cdot 10=153.9[/tex] and the whole sum is [tex]\$1,539+\$153.9=\$1,692.9[/tex]
If [tex]t_3=15[/tex] years, then
[tex]I_3=1,539\cdot 0.01\cdot 15=230.85[/tex] and the whole sum is [tex]\$1,539+\$230.85=\$1,769.85[/tex]