Respuesta :

Answer:

the derivative of given function is

[tex]cos(cos^2 x )(-sin 2 x)[/tex]

Step-by-step explanation:

Step :-

using chain rule formula [tex]\frac{d y}{d x} = \frac{d y}{d u} X\frac{d u}{d x}[/tex]

let [tex]Y = sin(cos^2 x)[/tex]  ...........(1)

[tex]\frac{d(sin x)}{d x} = cos x[/tex]

Differentiating equation (1) with respective to x,we get

[tex]\frac{d y}{d x} = cos(cos^2 x) \frac{d}{d x} (cos^2 x)[/tex]........(2)

we will use again formula

[tex]\frac{d(cos x)}{d x} = -sin x[/tex]

[tex]\frac{d (x^{2} )}{d x} =2 x[/tex]

From (2) equation we will get solution is

[tex]\frac{d y}{d x} = cos (cos^2 x) (2 cos x (\frac{d(cos x)}{dx} )[/tex]  ........(3)

again simplification the equation (3) we will get

[tex]\frac{d y}{d x} = cos(cos^2 x)(2 cos x(-sin x))[/tex] ........(4)

by using trigonometry formula

[tex]2 sin x cos x = sin2x[/tex]

now the equation (4) we get final solution is

[tex]\frac{d y}{d x} = cos(cos^2 x)(- sin2x)[/tex]