Respuesta :

Answer:

  (a) (f+g)(x) = √(2x) +x²

  (b) (f-g)(x) = √(2x) -x²

  (c) (f·g)(x) = x²√(2x)

  (d) (f/g)(x) = (√(2x))/x²

Step-by-step explanation:

These are all about the meaning of the notation (f <operator> g)(x). When the operator is an arithmetic operation (addition, subtraction, multiplication, division), the notation means the same thing as ...

  f(x) <operator> g(x)

__

(a) (f+g)(x) = f(x) + g(x)

  (f+g)(x) = √(2x) +x²

__

(b) (f-g)(x) = f(x) -g(x)

  (f-g)(x) = √(2x) -x²

__

(c) (f·g)(x) = f(x)·g(x)

  (f·g)(x) = x²√(2x)

__

(d) (f/g)(x) = f(x)/g(x)

  (f/g)(x) = (√(2x))/x²