Answer: 4.4
Step-by-step explanation:
The formula for calculating the area of regular hexagon is given as :
Area = [tex]\frac{3\sqrt{3}}{2}[/tex][tex]a^{2}[/tex]
Where a is the length of a side.
Substituting the value given , we have :
50 = [tex]\frac{3\sqrt{3}}{2}[/tex][tex]a^{2}[/tex]
50 x 2 = [tex]3\sqrt{3}[/tex] [tex]a^{2}[/tex]
100 = [tex]3\sqrt{3}[/tex] [tex]a^{2}[/tex]
Divide through by [tex]3\sqrt{3}[/tex]
[tex]a^{2}[/tex] = [tex]\frac{100}{3\sqrt{3}}[/tex]
[tex]a^{2}[/tex] = 19.24500897
Take the square root of both sides :
a = [tex]\sqrt{19.24500897}[/tex]
a = 4.3869
To the nearest tenth
a = 4.4