URGENT! Quarter ends tonight!

Write the polynomial function, in standard form, that has zeros -3, 4, and 1.

URGENT Quarter ends tonight Write the polynomial function in standard form that has zeros 3 4 and 1 class=

Respuesta :

Answer: [tex]x^{3}[/tex] - 2[tex]x^{2}[/tex] - 11x + 12 = 0

Step-by-step explanation:

Since the zeros of the polynomials are -3 , 4 and 1 , then the equation will be in the form:

(x+3)(x-4)(x-1) = 0

Expanding (x+3)(x-4) , we have

[tex]x^{2}[/tex] - 4x + 3x - 12

⇒[tex]x^{2}[/tex] -x - 12

combining with (x-1) , we have

([tex]x^{2}[/tex] -x - 12) ( x -1 ) = 0

expanding , we have :

[tex]x^{3}[/tex] - [tex]x^{2}[/tex]-[tex]x^{2}[/tex] + x - 12x + 12 = 0

⇒[tex]x^{3}[/tex] - 2[tex]x^{2}[/tex] - 11x + 12 = 0