Answer:
(r - t)(x) = [tex]\frac{21 - 5x}{3x^{2}}[/tex]
Step-by-step explanation:
Given that, [tex]r(x) = \frac{7}{x^{2}}[/tex] and [tex]t(x) = \frac{5}{3x}[/tex]
Therefore, (r - t)(x) = r(x) - t(x)
{This is a kind of operation on function, in our case it is subtraction operation}
⇒ (r - t)(x) = [tex]\frac{7}{x^{2}} - \frac{5}{3x}[/tex]
⇒ (r - t)(x) = [tex]\frac{7 \times 3 - 5x}{3x^{2} }[/tex]
⇒ (r - t)(x) = [tex]\frac{21 - 5x}{3x^{2}}[/tex] (Answer)