Respuesta :

Answer:

The solution set can be given as:

[tex]\{x|x\ \epsilon\ R,x\neq -3\}[/tex]

Step-by-step explanation:

Given function:

[tex]f(x)=\frac{1}{2x+6}[/tex]

To find the domain of the function in set notation.

Solution:

For the function [tex]f(x)[/tex] to exist the denominator must be ≠ 0

We have the denominator [tex](2x+6)[/tex] which  cannot be = 0.

Thus, we can find the domain of the function using the above relation.

The function [tex]f(x)[/tex] will not exist when:

[tex]2x+6=0[/tex]

Solving for [tex]x[/tex]

Subtracting both sides by 6.

[tex]2x+6-6=0-6[/tex]

[tex]2x=-6[/tex]

Dividing both sides by 2.

[tex]\frac{2x}{2}=\frac{-6}{2}[/tex]

∴ [tex]x=-3[/tex]

Thus, the function will not exist at [tex]x=-3[/tex]. This means it has all real number solutions except -3.

The solution set can be given as:

[tex]\{x|x\ \epsilon\ R,x\neq -3\}[/tex]