Respuesta :
[tex]\bf (\stackrel{x_1}{0}~,~\stackrel{y_1}{-\frac{8}{9}}) ~\hspace{10em} \stackrel{slope}{m}\implies 4 \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{\left(-\cfrac{8}{9} \right)}=\stackrel{m}{4}(x-\stackrel{x_1}{0}) \\\\\\ y+\cfrac{8}{9}=4x\implies y = 4x-\cfrac{8}{9}[/tex]
Slope-intercept form: y = mx + b [m is the slope, b is the y-intercept or the y value when x = 0 ---> (0, y)]
Since you know:
m = 4
[tex]b=-\frac{8}{9}[/tex] Plug it into the equation
y = mx + b
[tex]y=4x-\frac{8}{9}[/tex]