M(-5, 2) and N(5, 2) are the endpoints of the segment MN on the coordinate plane. What is the length of MN¯¯¯¯¯¯ ?

Respuesta :

Mehek
Use the distance formula

[tex] \sqrt{(2-2)^2+(5--5)^2}=\sqrt{100}=10 [/tex]

Answer:

length of MN is 10

Step-by-step explanation:

M(-5, 2) and N(5, 2) are the endpoints of the segment MN

To find the length MN we use distance formula

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

M(-5, 2)  is (x1,y1)

N(5, 2) is (x2,y2)

Plug in the values and find out the distance

[tex]d=\sqrt{(5-(-5))^2+(2-2)^2}[/tex]

[tex]d=\sqrt{(5+5)^2+(2-2)^2}[/tex]

[tex]d=\sqrt{(10)^2+(0)^2}[/tex]

[tex]d=\sqrt{100}=10[/tex]

So length of MN is 10