Respuesta :
Answer:
length of MN is 10
Step-by-step explanation:
M(-5, 2) and N(5, 2) are the endpoints of the segment MN
To find the length MN we use distance formula
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
M(-5, 2) is (x1,y1)
N(5, 2) is (x2,y2)
Plug in the values and find out the distance
[tex]d=\sqrt{(5-(-5))^2+(2-2)^2}[/tex]
[tex]d=\sqrt{(5+5)^2+(2-2)^2}[/tex]
[tex]d=\sqrt{(10)^2+(0)^2}[/tex]
[tex]d=\sqrt{100}=10[/tex]
So length of MN is 10