Respuesta :

B and D are opposite angles, so they're supplementary. 


m∠B + m∠D = 180° 82° + m∠D = 180° m∠D = 98°

Answer:

[tex]m<D=98\°[/tex]

Step-by-step explanation:

we know that

The Inscribed Quadrilateral Theorem, states that a quadrilateral is inscribed in a circle if and only if the opposite angles are supplementary

so

In this problem

[tex]m<A+m<C=180\°[/tex] -----> equation A

[tex]m<B+m<D=180\°[/tex] -----> equation B

we have

[tex]m<A=64\°[/tex]

[tex]m<B=(6x+4)\°[/tex]

[tex]m<C=(9x-1)\°[/tex]

Step 1

Find the value of x

substitute the measure of angle A and the measure of angle C in the equation A to find x

[tex]64\°+(9x-1)\°=180\°[/tex]

[tex]9x=180\°-64\°+1\°[/tex]

[tex]9x=117\°[/tex]

[tex]x=13\°[/tex]

Step 2

Find the measure of angle D

substitute the measure of angle B in the equation B to find m<D

[tex](6x+4)+m<D=180\°[/tex]

substitute the value of x

[tex](6(13)+4)+m<D=180\°[/tex]

[tex]82\°+m<D=180\°[/tex]

[tex]m<D=180\°-82\°=98\°[/tex]