Respuesta :
Answer:
The correlation coeffcient for this case was provided:
r =0.934
And this coefficient is very near to 1 the maximum possible value, so then we can interpret that the relationship between the entrace exam score and the grade point average are strongly linearly correlated .
We can also find the [tex] r^2[/tex] who represent the determination coefficient and we got:
[tex] r^2 = 0.934^2= 0.872[/tex]
And the interpretation for this is that a linear model explains appproximately 87.2% of the variability between the two variables
Step-by-step explanation:
Previous concepts
The correlation coefficient is a "statistical measure that calculates the strength of the relationship between the relative movements of two variables". It's denoted by r and its always between -1 and 1.
And in order to calculate the correlation coefficient we can use this formula:
[tex]r=\frac{n(\sum xy)-(\sum x)(\sum y)}{\sqrt{[n\sum x^2 -(\sum x)^2][n\sum y^2 -(\sum y)^2]}}[/tex]
The correlation coeffcient for this case was provided:
r =0.934
And this coefficient is very near to 1 the maximum possible value, so then we can interpret that the relationship between the entrace exam score and the grade point average are strongly linearly correlated .
We can also find the [tex] r^2[/tex] who represent the determination coefficient and we got:
[tex] r^2 = 0.934^2= 0.872[/tex]
And the interpretation for this is that a linear model explains appproximately 87.2% of the variability between the two variables