Use data from appendix iib in the textbook to calculate the equilibrium constants at 25 degrees Celsius for each of the following reactions:
a. 2 CO (g) O2(g) <-> 2CO2 (g)
b. 2H2S (g) <-> 2H2 (g) S2 (g)

Respuesta :

Answer:

a) K ≅ 2.0  × 10⁹⁰

b) K = 2.0  × 10⁻²⁶

Explanation:

For the first reaction.

2 CO(g)       +     O₂(g)     ⇄    2CO₂(g)

Equilibrium constant  equation be represented as:

[tex]\delta G^0[/tex] = -RT㏑K

㏑K = [tex]\frac{\delta G^0}{-RT}[/tex]             ----------------- equation (1)

Where;

Gas Constant (R) = 8.314 × 10⁻³ kJ K⁻¹ mol⁻¹

Temperature (T) = 25°C = (25 + 273 K) = 298 K

Standard Gibbs free energy [tex]\delta G^0_{rxn}[/tex] = ???

To find the  [tex]\delta G^0_{rxn}[/tex]  for the above equation; we have:

[tex]\delta G^0_{rxn} =[2*\delta G^0_{f(co_2)}-(2*\deltaG^0_{f(co)}+1*\delta G^0_{f(o_2)})]kJ/mol[/tex]

[tex]\delta G^0_{rxn} =[2*394.4-(2*137.2+1*0)]kJ/mol[/tex]

[tex]\delta G^0_{rxn} = - 514.4 kJ/mol[/tex]

If we slot in our values back to equation (1); we have:

㏑K  = [tex]-\frac{-514.4kJ/mol}{(8.314*10^-3kJmol^{-1}*(298K)}[/tex]

㏑K  = 207.6

K = [tex]e^{207.6[/tex]

K = 1.5 × 10⁹⁰

K ≅ 2.0  × 10⁹⁰

Therefore, the equilibrium constants at 25 degrees Celsius for this reaction = 2.0  × 10⁹⁰

b)

For the second reaction.

2H₂S(g)       ⇄    2H₂(g)     +      S₂(g)

Equilibrium constant  equation be represented as:

[tex]\delta G^0[/tex] = -RT㏑K

㏑K = [tex]\frac{\delta G^0}{-RT}[/tex]             ----------------- equation (2)

Where;

Gas Constant (R) = 8.314 × 10⁻³ kJ K⁻¹ mol⁻¹

Temperature (T) = 25°C = (25 + 273 K) = 298 K

Standard Gibbs free energy [tex]\delta G^0_{rxn}[/tex] = ???

To find the  [tex]\delta G^0_{rxn}[/tex]  for the above equation; we have:

[tex]\delta G^0_{rxn} =[(2*\delta G^0_{f(H_2)}+1*\delta G^0_{f(S_2)})-2*\delta G^0_{f(H_2S)})]kJ/mol[/tex]

[tex]\delta G^0_{rxn} =[(2*0)+(1*79.7)-(2*-33.4})]kJ/mol[/tex]

[tex]\delta G^0_{rxn} =146.5kJ/mol[/tex]

Substituting our values, we have :

㏑K  = [tex]-\frac{146.4kJ/mol}{(8.314*10^-3kJmol^{-1}*(298K)}[/tex]

㏑K  = -59.13

K = [tex]e^{-59.13}[/tex]

K = 2.0  × 10⁻²⁶

Therefore, the equilibrium constants at 25 degrees Celsius for this reaction = 2.0  × 10⁻²⁶