Answer:
His acceleration is [tex]\frac{1}{15}[/tex] meters per seconds²
Step-by-step explanation:
Acceleration is the rate of change of the speed
The formula of acceleration is [tex]a=\frac{v_{f}-v_{i}}{t}[/tex] , where
∵ Jim goes from 70 meters/minute (beginning speed) to
106 meters/minute (final speed) in 9 seconds
∴ His initial speed [tex]v_{i}[/tex] = 70 meters/minute
- Change it the meter per second
∵ 1 minute = 60 seconds
∴ [tex]\frac{70}{(1)(60)}=\frac{70}{60}=\frac{7}{6}[/tex] meters/second
∴ [tex]v_{i}[/tex] = [tex]\frac{7}{6}[/tex] meters/second
∵ His final speed [tex]v_{f}[/tex] = 106 meters/minute
- Change it the meter per second
∴ [tex]\frac{106}{(1)(60)}=\frac{106}{60}=\frac{53}{30}[/tex] meters/second
∴ [tex]v_{f}[/tex] = [tex]\frac{53}{30}[/tex] meters/second
∵ The time of the change of his speed is 9 seconds
∴ t = 9
∵ The formula of acceleration is [tex]a=\frac{v_{f}-v_{i}}{t}[/tex]
- Substitute the values of t, [tex]v_{i}[/tex] and [tex]v_{f}[/tex] in the formula above
∴ [tex]a=\frac{\frac{53}{30}-\frac{7}{6}}{9}=\frac{1}{15}[/tex]
∴ His acceleration is [tex]\frac{1}{15}[/tex] meters per seconds²