Respuesta :
[tex]\text{Hey there!}[/tex]
[tex]\checkmark\mathsf{The\ answer\ is\ \boxed{\mathsf{false}}}\checkmark[/tex]
[tex]\text{Reason?}[/tex]
[tex]\text{Here's\ the\ steps\ as\ to\ why\ it\ is\ \underline{false}}[/tex]
[tex]\huge\text{\bf{Solving for y in the FIRST set} }[/tex]
[tex]\mathsf{5x+y=-12}\\\mathsf{Add\ by\ -5x \ on\ your\ sides}\\\mathsf{5x+y+(-5x)=-12+(-5x)}\\\mathsf{If\ you\ solved\ that\ correctly\uparrow\ you\ should've\ came up\ with\downarrow}\\\mathsf{y=-5x-12}[/tex]
[tex]\huge\text{\bf{Substitute the -5x - 12 for your y-value}}[/tex][tex]\mathsf{4x-y=3}\\\mathsf{9x+12=3}\\\mathsf{Add\ by\ -12\ on\ your\ sides}\\\mathsf{9x+12+(-12)=3+(-12)}\\\mathsf{Cancel\ out\ 12 +(-12)\ because\ it\ gives\ us\ 0 }\\\mathsf{Keep: 3+(-12)\ because\ it\ gives\ us\ -9}\\\mathsf{New\ equation\ (for\ now)}\\\mathsf{9x=-9}\\\mathsf{Divide\ both\ sides\ by\ 9}\\\mathsf{\dfrac{9x}{9}=\dfrac{-9}{9}}\\\mathsf{Cancel\ out: \dfrac{9x}{9}\ because\ it\ equals\ 1}\\\mathsf{Keep: \dfrac{-9}{9}\ because\ gives\ you\ the\ value\ of\ x}[/tex]
[tex]\huge\boxed{\text{\underline{x = -1}}}[/tex]
[tex]\huge\text{\bf{Substitute your -1 as x}}[/tex]
[tex]\mathsf{y=-5x-12}\\\mathsf{y= -5(-1)-12}\\\mathsf{-5(-1)=5}\\\mathsf{5-12=y}\\\mathsf{Simply\ that\ above\ \uparrow}\\\mathsf{If\ you\ solved\ correctly\ you\ have\ the\ value\ of\ y}[/tex]
[tex]\huge\boxed{\text{\underline{y = -7}}}[/tex]
[tex]\large\text{\bf{Thus, your solutions would be: (-1, -7)}}[/tex]
[tex]\huge{\bf{(-1,7) \neq (-1,-7)}}[/tex]
[tex]\huge\boxed{\huge{\text{Answer: \bf{FALSE}}}}\checkmark[/tex]
[tex]\text{Good luck on your assignment and enjoy your day!}[/tex]
~[tex]\dfrac{\frak{LoveYourselfFirst}}{:)}[/tex]
Answer:
False
Explanation:
The solution to the system of equations (-1,7) is FALSE because in the first equation, 5 multiplied by x which is -1 and y which is 7 doesn't give a result of -12. Instead, it gives a result of 2. This makes the solution a false one. In the second equation, 4 multiplied by x which is 7 subtracted from y which is 7 was supposed to be 3 but instead the result was 11 with this set of solutions.