Respuesta :

The simplified expression is [tex]\left(-\frac{5}{7}\right)^{17}[/tex].

Solution:

Given expression is [tex]\left(-\frac{5}{7}\right)^{8} \cdot\left(-\frac{5}{7}\right)^{9}[/tex].

To simplify this expression:

[tex]$\left(-\frac{5}{7}\right)^{8} \cdot\left(-\frac{5}{7}\right)^{9}[/tex]

Using exponent rule:

If the base of the product is same then add the powers of the bases.

[tex]a^m \cdot a^n = a^{m+n}[/tex]

[tex]$\left(-\frac{5}{7}\right)^{8} \cdot\left(-\frac{5}{7}\right)^{9}=\left(-\frac{5}{7}\right)^{8+9}[/tex]

                           [tex]$=\left(-\frac{5}{7}\right)^{17}[/tex]

[tex]$\left(-\frac{5}{7}\right)^{8} \cdot\left(-\frac{5}{7}\right)^{9}=\left(-\frac{5}{7}\right)^{17}[/tex]

The simplified expression is [tex]\left(-\frac{5}{7}\right)^{17}[/tex].