Respuesta :

The length of AB = 23.

Solution:

Given ABC is a triangle.

BC = a = 49 m

AC = b = 56 m

∠C = 24°

Let AB = c

To find the length of AB:

Use cosine law,

[tex]c^{2}=a^{2}+b^{2}-2 a b \cos C[/tex]

[tex]c^{2}=49^{2}+56^{2}-2 (49)(56) \cos 24^\circ[/tex]

[tex]c^{2}=2401+3136-5488 \cos 24^\circ[/tex]

[tex]c^{2}=5537-5488 \cos 24^\circ[/tex]

The value of cos 24° = 0.9135

[tex]c^{2}=5537-5488(0.9135)[/tex]

[tex]c^{2}=5537-5013.288[/tex]

[tex]c^{2}=523.712[/tex]

Take square root on both sides of the equation.

c = 22.88

c = 23 (rounding off to nearest value)

The length of AB = 23.