Respuesta :

Answer:

[tex]14 ( 5)^{\frac{1}{4}} p^{\frac{1}{4}} q^{\frac{1}{2}} r^{2}[/tex]

Step-by-step explanation:

The expression to simplify in this problem is

[tex]7\sqrt[4]{80pq^2r^8}[/tex]

Which can be rewritten as

[tex]7(80pq^2r^8)^{\frac{1}{4}}[/tex]

Or also as

[tex]7\cdot 80^{\frac{1}{4}} \cdot p^{\frac{1}{4}} \cdot (q^2)^{\frac{1}{4}} \cdot (r^8)^{\frac{1}{4}}[/tex]

Now we can apply the following rule for the calculation of the power of a power:

[tex](a^m)^n = a^{m\cdot n}[/tex]

So we get:

[tex]7\cdot 80^{\frac{1}{4}} \cdot p^{\frac{1}{4}} \cdot q^{\frac{1}{2}} \cdot r^{2}[/tex]

Which can therefore be rewritten as

[tex]7\cdot (2^4\cdot 5)^{\frac{1}{4}} \cdot p^{\frac{1}{4}} \cdot q^{\frac{1}{2}} \cdot r^{2}[/tex]

And so, we get

[tex]7\cdot 2 \cdot ( 5)^{\frac{1}{4}} \cdot p^{\frac{1}{4}} \cdot q^{\frac{1}{2}} \cdot r^{2}[/tex]

which can be finally rewritten as

[tex]14 ( 5)^{\frac{1}{4}} p^{\frac{1}{4}} q^{\frac{1}{2}} r^{2}[/tex]