Respuesta :

Answer:

The verification is in the explanation.

Step-by-step explanation:

I'm going to start with the left and play with it til I get the right.

First step: Expand the binomial square using [tex](u+v)^2=u^2+2uv+v^2[/tex].

[tex](\tan(x)+\cot(x))^2[/tex]

[tex]\tan^2(x)+2\tan(x)\cot(x)+\cot^2(x)[/tex]

Second step: Realize [tex]\tan(x)[/tex] and [tex]cot(x)[/tex] are reciprocal functions. Their product will be 1.

[Side note: [tex]\tan(x)\cot(x)=\frac{\sin(x}{\cos(x)}\frac{\cos(x)}{sin(x)}=\frac{\sin(x)\cos(x)}{\sin(x)\cos(x)}=1[/tex].]

[tex]\tan^2(x)+2(1)+\cot^2(x)[/tex]

[tex]\tan^2(x)+2+\cot^2(x)[/tex]

Third step: Recall the Pythagorean Identities [tex]\tan^2(x)+1=sec^2(x)[/tex] and [tex]1+cot^2(x)=csc^2(x)[/tex]:

[tex]\tan^2(x)+(1+1)+\cot^2(x)[/tex]

[tex]\tan^2(x)+1+1+\cot^2(x)[/tex]

[tex](\tan^2(x)+1)+(1+\cot^2(x))[/tex]

[tex]\sec^2(x)+\csc^2(x)[/tex]